

Reg.	No.	:	
Nom	٠.		

I Semester M.Sc. Degree (CBCSS – OBE – Regular)
Examination, October 2023
(2023 Admission)
MATHEMATICS
MSMAT 01C04 : Topology

Time: 3 Hours

PART - A

Answer any five questions. Each question carries 4 marks.

- 1. Give a basis for the standard topology on \mathbb{R}^2 .
- Let Y be a subspace of X and A be a subset of Y. Show that A is closed in Y if and only if it equals the intersection of a closed set of X with Y.
- Show that limits of sequences are unique in a Hausdorff space.
- Prove or disprove : Product topology is finer than the box topology.
- 5. Define a quotient map and give an example.
- 6. Is every path connected space connected? Justify your answer. (5×4=20)

PART - B

Answer any three questions. Each question carries 7 marks.

- 7. Let $X = \{1, 2, 3, 4, 5\}$ and $\mathcal{I} = \{\phi, X, \{2, 5\}, \{2, 3, 4\}, \{2, 3, 4, 5\}, \{1, 2, 5\}, \{3, 4\}, \{2\}\}$
 - a) List the closed subsets of X.
 - b) Determine the closure of the sets {2,4} and {1, 3}.
 - c) Check whether the space (X, \mathcal{I}) is T₂ .
 - d) Check whether the space (X, \mathcal{I}) is connected.

P.T.O.

8. Let

 $\begin{aligned} &d_1\left((x_1,x_2),\,(y_1,y_2)\right)=[(x_1-y_1)^2+(x_2-y_2)^2]^{\frac{1}{2}},\,d_2\left((x_1,x_2),\,(y_1,y_2)\right)=\max\left\{|x_1-y_1|,\,(x_2-y_2)^2\right\}^{\frac{1}{2}},\,d_2\left((x_1,x_2),\,(y_1,y_2)\right)=\min\left\{1,\,[\,(x_1-y_1)^2+(x_2-y_2)^2]^{\frac{1}{2}}\right\}\,\text{and}\,\mathcal{I}_1,\,\mathcal{I}_2\,\text{and}\,\mathcal{I}_3\,\text{be the corresponding topologies on}\,\,\mathbb{R}^2\,\text{induced by the metrics}\,d_1,\,d_2\,\text{and}\,d_3\,\text{respectively}. \end{aligned}$ Which of the following options are correct? Justify your answer.

a)
$$\mathcal{I}_1 = \mathcal{I}_2 \neq \mathcal{I}_3$$

b)
$$\mathcal{I}_1 \neq \mathcal{I}_2 = \mathcal{I}_3$$

c)
$$\mathcal{I}_1 \neq \mathcal{I}_2 \neq \mathcal{I}_3$$

d)
$$\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{I}_3$$

- 9. Consider the subset A = $\{(x \times \sin \frac{1}{x}) : 0 < x \le 1\}$ of the plane \mathbb{R}^2 .
 - a) Find the closure of A in \mathbb{R}^2 .
 - b) Determine the connectedness and path connectedness of closure of A.
- 10. Which of the following are topological property?
 - a) connectedness
 - b) boundedness
 - c) pathconnectedness.
- 11. Determine whether the following subspaces of $\mathbb R$ are homeomorphic.
 - a) [0,1) and (0,1)
 - b) \mathbb{O} and \mathbb{Z}
 - c) (0,1) and S¹\ {(1,0)} where S¹ = { $x \times y : x^2 + y^2 = 1$ } considered as a subspace of \mathbb{R}^2 . (3x7=21)

PART - C

Answer any three questions. Each question carries 13 marks.

- 12. Let X and Y be two topological spaces.
 - a) If A is a subspace of X and B is a subspace of Y, prove that the product topology on A x B is the same as the topology A x B inherits as the subspace of X x Y.
 - b) If Π_1 and Π_2 are projections of X × Y to X and Y respectively, then prove that the collection $\{\Pi_1^{-1}(U): U \text{ is open in X}\} \cup \{\Pi_2^{-1}(V): V \text{ is open in Y}\}$ is a sub-basis for the product topology on X × Y .
- 13. a) Let X and Y be topological spaces and $f: X \to Y$. Prove that the following are equivalent.
 - i) f is continuous.
 - ii) For every subset A of X, $f(\overline{A}) \subset \overline{f(A)}$.
 - iii) For every closed set B of Y, the set f -1(B) is closed in X.
 - b) Let X = A ∪ B where A and B are closed in X and f : A → Y and g : B → Y be continuous. If f(x) = g(x) for every x ∈ A ∩ B, then prove that f and g combine to give a continuous function h : X → Y defined by h(x) = f(x) if x ∈ A and h(x) = g(x) if x ∈ B.
- 14. a) Define order topology and linear continuum.
 - b) Give an example of a linear continuum.
 - c) Show that a linear continuum in the order topology is connected.
- 15. a) Show that \mathbb{R}^{ω} in product topology is metrizable.
 - b) Is \mathbb{R}^{ω} connected in the product topology ? Give details to support your assertion.
- 16. a) Prove that the composition of two quotient maps is a quotient map.
 - b) Let X and Y be topological spaces and p: X → Y be a quotient map. Let Z be a topological space and g: X → Z be a map that is constant on each set p⁻¹ ({y}). Show that g induces a map f: Y → Z such that f o p = g and f is a quotient map if and only if g is a quotient map.