Second Semester FYUGP Mathematics Examination APRIL 2025 (2024 Admission onwards) KU2DSCMAT112 (DIFFERENTIAL CALCULUS, CURVE FITTING AND COORDINATE SYSTEMS)

(DATE OF EXAM : 02-05-2025)

Time : 120 min	Maximum Marks : 70
Part A (Answer any 6 questions. Each carries	3 marks)
1. Find the third derivative of $y = \ln(1+x)$.	3
2. Find y_n , if $y = \cos(ax + b)$.	3
3. How can $y = ae^{bx}$ be reduced to a linear form? E quired.	Explain the transformation re- 3
4. Explain how the method of least squares is used straight line.	to determine the best-fitting 3
5. What is the criterion used in the method of least s fitting curve?	equares to determine the best-3
6. Determine the points satisfying the equations $x^2 + y$	$y^2 = 4$ and $z = 3$. 3
7. Give the geometric interpretation of the following in (a) $x^2 + y^2 + z^2 > 4$. (b) $x^2 + y^2 + z^2 = 4, z \le 0$.	nequalities/equation.
	3
8. What does $\rho = 3$ represent in spherical coordinates?	? 3
Part B (Answer any 4 questions. Each carrie	es 6 marks)

9. Verify if the values of x and y, related as shown in the following table, obey the law $y = a + b\sqrt{x}$. If so, find graphically the values of a and b. 6

х	500	1000	2000	4000	6000
у	0.20	0.33	0.38	0.45	0.51

10. If p is the pull required to lift the weight by means of a pulley block, find a linear law of the form p = a + bw, connecting p and w using the following data.

Compute p, when w = 150 lb.

6

w (lb)	50	70	100	120
p (lb)	12	15	21	25

11. Find the best possible curve of the form y = a + bx, using method of least squares, for the data:

12. Determine the center and radius of the sphere $x^2 + y^2 + z^2 + 6y + 8z = 0.$ 6

- 13. Graph the set of points whose polar coordinates satisfy
 - (a) $0 \le r \le 1, \frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$ (b) $-1 \le r \le 3, \theta = \frac{\pi}{3}$.
- 14. Plot the point $\left(2, \frac{\pi}{6}\right)$ and find all polar coordinates of it. 6 Part C (Answer any 2 question(s). Each carries 14 marks)

15. (a) (a) Evaluate
$$\frac{\partial z}{\partial u}$$
 if $z = \tan^{-1} \frac{x}{y}$, $x = u \cos v$, $y = u \sin v$, $(u, v) = (1.3, \frac{\pi}{6})$.
(b) (b) Evaluate $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial u}$ if $w = 4e^x \ln y$, $x = \ln(u \cos v)$, $y = u \sin v$, (u, v)

(b) (b) Evaluate
$$\frac{\partial u}{\partial u}$$
 and $\frac{\partial u}{\partial v}$ if $w = 4e^x \ln y$, $x = \ln(u \cos v)$, $y = u \sin v$, $(u, v) = (2, \frac{\pi}{4})$.

16. (a) (a) State the mixed derivative theorem and verify that $w_{xy} = w_{yx}$, if $w = x \sin y + y \sin x + xy$.

6

14

(b) (b) Find
$$\frac{\partial^2 w}{\partial x \partial y}$$
 if $w = xy + \frac{e^y}{y^2 + 1}$.

17. If
$$y = x \log\left(\frac{x-1}{x+1}\right)$$
, then show that $y_n = (-1)^{n-2}(n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n}\right]$.