Reg No:.... K24FY1476(C) Name :..... First Semester FYUGP Mathematics Examination November 2024 (2024 Admission onwards) KU1DSCMAT116 (CALCULUS AND COORDINATE SYSTEMS) (EXAM DATE : 06-12-2024)Time: 120 min Maximum Marks: 70 Part A (Answer any 6 questions. Each carries 3 marks) 1. Use the laws of exponents to simplify the following expressions: $(a)4^{\frac{1}{3}}.4^{\frac{1}{6}}$ (b) $(8^{\frac{1}{9}})^3$. 3 2. Simplify the expression: $\ln(e^{2\ln x})$. 3 3. Find $\lim_{y\to 0} \frac{y^2}{y^3+6}$. 3 4. Apply Chain rule to differentiate $y = e^{\cos x}$. 3 5. If $g(t) = \frac{1}{t^2}$, find g'(t) at t = -1. 3 6. State the Mean Value Theorem for definite integrals. 3 7. Evaluate $\int_{0}^{3b} x^2 dx$. 3 8. Evaluate $\int a \sin bx \, dx$. 3 Part B (Answer any 4 questions. Each carries 6 marks) 9. If $f(x) = \frac{x+2}{x-1}$, find $f^{-1}(x)$ and identify the domain and range of $f^{-1}(x)$ 6 10. Calculate the value of the limit $\lim_{v\to 2} \frac{v^2-4}{v^4-16}$. 6 11. Find a closed-form for the inverse hyperbolic function $u = \tanh^{-1} x$. 6

12. Evaluate $\int_0^{\frac{\pi}{6}} (\sec x + \tan x)^2 dx.$

13. Evaluate
$$\int \frac{1}{x(x+1)} dx$$

14. Evaluate $\frac{d}{dx} \int_0^3 (t^3 + 1)dt$

Part C (Answer any 2 question(s). Each carries 14 marks)

- 15. (a) Graph the curve $r = 1 + \cos \frac{\theta}{2}$
 - (b) Describe the set of points $P(\rho, \phi, \theta)$ whose spherical co-ordinates satisfy the equations $\rho = 1, \phi = \frac{\pi}{3}$.

14

- 16. (a) Find the Cartesian equivalent of the polar equation $r = 1 + 2r \cos \theta$
 - (b) Translate the equation $x^2 + y^2 + z^2 = 4z$ from the given coordinate system into equations in the other two coordinate systems.

14

- 17. (a) Find $\frac{dy}{dx}$ using the method of logarithmic differentiation, if $y=(x^2+1)(x^4+2)^{\frac{1}{2}}$.
 - (b) Find $\frac{dy}{dx}$ using the method of logarithmic differentiation, if $y=\frac{x^5+5}{(x+3)^2}.$
 - (c) Show that there is a root of the equation $x^3 x 1 = 0$ between 1 and 2.

14